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ABSTRACT 

This paper estimates the welfare-optimal market share of wind and solar power, 
explicitly taking into account their output variability. We present a theoretical 
valuation framework that consistently accounts for the impact of fluctuations over 
time, forecast errors, and the location of generators in the power grid on the 
marginal value of electricity from renewables. Then the optimal share of wind 
and solar power in Northwestern Europe’s generation mix is estimated from a 
calibrated numerical model. We find the optimal long-term wind share to be 20%, 
three times more than today; however, we also find significant parameter uncer­
tainty. Variability significantly impacts results: if winds were constant, the optimal 
share would be 60%. In addition, the effect of technological change, price shocks, 
and policies on the optimal share is assessed. We present and explain several 
surprising findings, including a negative impact of CO2 prices on optimal wind 
deployment. 
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1. INTRODUCTION 

Many jurisdictions have formulated quantitative targets for energy policy, such as targets 
for greenhouse gas mitigation, energy efficiency, or deployment of renewable energy sources. For 
example, the European Union aims at reaching a renewables share in electricity consumption of 
35% by 2020 and 60–80% in 2050;1 similar targets have been set in many regions, countries, states, 
and provinces around the globe. Implicitly or explicitly, such targets seem to be determined as the 
welfare-maximal or “optimal share” of renewables, however, it is often unclear how targets are 
derived. This paper discusses the socially optimal share of wind and solar power in electricity 
supply. It provides a theoretical analysis that is focused on the variability of these energy sources, 
a structured methodological literature review, and numerical estimates for Northwestern Europe. 

The optimal amount of wind and solar capacity is determined by the intersection of their 
marginal benefit and marginal cost curves. Both curves are not trivial to characterize, since they 

1. National targets for 2020 are formulated in the National Renewable Energy Action Plans. Beurskens et al. (2011), 
Eurelectric (2011a), PointCarbon (2011) and ENDS (2010) provide comprehensive summaries. EU targets for 2050 have 
been formulated in European Comission (2011). 
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are affected by many drivers. Marginal costs are impacted by technological learning, raw material 
prices, and the supply curve of the primary energy resource. Marginal benefits are driven by the 
private and social costs of alternative electricity sources, such as investment costs, fuel prices and 
environmental and health externalities. They are also affected by the variability of wind and solar 
power. This paper discusses the impact of variability on solar and wind power’s marginal benefit 
curve and their welfare-optimal quantities. 

Wind and solar power have been labeled variable renewable energy (VRE) sources (also 
known as intermittent, fluctuating, or non-dispatchable), since their generation possibilities vary 
with the underlying primary energy source. Specifically, we refer to “variability” as three inherent 
properties of these technologies: variability over time, limited predictability, and the fact that they 
are bound to certain locations (cf. Milligan et al., 2011; Sims et al., 2011). These three aspects of 
variability have implication for welfare, cost-benefit, and competitiveness analyses. For example, 
the marginal value (or price) of electricity depends on the time it is produced, and hence the marginal 
benefit of solar generators might be increased by the fact that they produce electricity at times of 
high demand. For unbiased estimates of the optimal amount of wind and solar capacity, their 
variability has to be accounted for. This paper explains theoretically why variability matters, how 
it can be accounted for, and presents an empirical application. 

This study contributes to the literature in four ways. Firstly, we theoretically explain why 
variability has economic consequences. We present a framework that allows accounting compre­
hensively and consistently for of all aspects of VRE variability, but is simple enough to allow for 
quantifications. Secondly, we provide an extensive review of the existing empirical model landscape 
to explain which kind of modeling approaches are able to capture which driver of marginal costs 
and benefits, and specifically, which models are able to represent variability. Thirdly, we present 
new numerical model results. Results are derived from the power market model EMMA that has 
been developed to capture variability appropriately. Variability is shown to have a large impact on 
the optimal share of VRE. Finally, we test the impact of price, policy, and technology shocks on 
the optimal share numerically. We find and explain a number of unexpected results, for example 
that higher CO2 or fuel prices can reduce the optimal VRE share under certain conditions. 

The paper is structured as follows. Section 2 discusses welfare analysis theoretically. Sec­
tion 3 reviews the literature. Section 4 introduces the numerical electricity market model EMMA 
that is used in section 5 to estimate optimal penetration rates of wind and solar power for North­
western Europe. Section 6 summarizes the numerical results and section 7 concludes. 

2. THEORY: THE ECONOMICS OF VARIABILITY 

This section discusses the economics of variable renewables theoretically. It applies mi­
croeconomic theory to electricity markets to derive the welfare-optimal quantity of wind and solar 
capacity. This paper focuses on different aspects of variability. Other economic issues such as 
endogenous learning, externalities, or political economy issues of security of supply are important, 
but beyond the scope of this paper. The theoretical arguments put forward in this section are not 
restricted to variable renewables, but apply to all generation technologies. 

As common practice in economics, we determine the “optimal amount” of wind and solar 
power as the welfare-maximizing amount. Elsewhere, the optimal VRE capacity has been deter­
mined by minimizing curtailment (Bode 2013), minimizing storage needs (Heide et al. 2010), or 
optimizing other technical characteristics of the power system. Denny & O’Malley (2007) determine 
the “critical amount” of wind power, where net benefits become zero. 

Copyright © 2015 by the IAEE. All rights reserved. 



The Optimal Share of Variable Renewables / 129 

As for all other goods, the welfare-optimal quantity of wind or solar capacity is charac­
terized by the intersection of its long-term marginal costs and marginal value (benefit). However, 
deriving wind power’s marginal cost and marginal benefit is not trivial. Economic cost-benefit 
analyses of electricity generation technologies require careful assessment and appropriate tools, 
because electricity as an economic good features some peculiar characteristics that make it distinct 
from other goods. In this section, we identify those peculiarities (2.1), derive the marginal cost (2.2) 
and marginal value (2.3) of VRE, and determine its optimal quantity (2.4). Throughout the paper, 
we expressed VRE quantities as share of total electricity consumption. 

2.1 Electricity is a Peculiar Commodity 

Electricity, being a perfectly homogeneous good, is the archetype of a commodity. Like 
other commodities, trade of electricity often takes place via standardized contracts on exchanges. 
In that sense, it seems straightforward to apply simple textbook microeconomics to wholesale power 
markets. However, the physical laws of electromagnetism impose crucial constraints, with important 
economic implications: i) storing electricity is costly and subject to losses; ii) transmitting electricity 
is costly and subject to losses; iii) supply and demand of electricity need to be balanced at every 
moment in time to guarantee frequency stability. These three aspects require an appropriate treat­
ment of the good “electricity” in economic analysis (Hirth et al. 2014). 

As an immediate consequence of these constraints, the equilibrium wholesale spot elec­
tricity price varies over time, across space, and over lead-time between contract and delivery: 

i) Since inventories cannot be used to smooth supply and demand shocks, the equilib­
rium electricity price varies dramatically over time. Wholesale prices can vary by two 
orders of magnitudes within one day, a degree of price variation that is hardly observed 
for other goods. 

ii) Similarly, transmission constraints limit the amount of electricity that can be trans­
ported geographically, leading to sometimes significant price spreads between quite 
close locations. 

iii) Because demand and supply has to be balanced at every instant, but fast adjustment 
of power plant output is costly, the price of electricity supplied at short notice can be 
very different from the price contracted with more lead-time. Hence, there is a cost 
to uncertainty. 

Across all three dimensions, price spreads occur both randomly and with predictable patterns. While 
the economic literature has emphasized temporal heterogeneity (Bessiere 1970, Stoughton et al. 
1980, Bessembinder & Lemmon 2002, Lamont 2008, Joskow 2011), the other two dimensions have 
not received similar attention. 

In other words, electricity indeed is a perfectly homogenous good and the law of one price 
applies, but this is true only for a given point in time at a given location for a given lead-time. 
Along these three dimensions, electricity is a heterogeneous good and electricity prices vary. Figure 
1 visualizes the three dimensions of heterogeneity by displaying the array of wholesale spot prices 
in one power system in one year. 

This fundamental economic property of electricity is approximated in real-world power 
market design: at European power exchanges, a different clearing price is determined for each hour 
and for each geographic bidding area. U.S. markets typically feature an even finer resolution, 
clearing the market every five minutes for each of several thousand transmission nodes. In addition, 
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Figure 1: The Array of Wholesale Spot Electricity Prices 

Notes: The electricity price varies along three dimensions: time, space, and lead-time (uncertainty). At a single point in the 
three-dimensional space of prices, electricity is perfectly homogeneous. 

there is a set of power markets with different lead-times: in most European markets, there is a day-
ahead market (12–36 hours before delivery), an intra-day market (few hours before delivery), and 
a balancing power market (close to real-time). As a consequence, there is not one electricity price 
per market and year, but 26,000 prices (in Germany) or three billion prices (in Texas).2 Hence, it 
is not possible to say what “the” electricity price in Germany or Texas was in 2012. 

The heterogeneity of electricity is not only reflected in market design, but also in tech­
nology. For homogenous goods, one production technology is efficient. In electricity generation, 
this is not the case: there exists a set of generation technologies that are efficiently used simulta­
neously in the same geographic market. There are nuclear and coal-fired so-called “base load”, 
natural gas-fired “mid load” combined cycle gas turbines, and gas- and oil-fired “peak load” open 
cycle gas turbines. These technologies can be distinguished by their fixed-to-variable costs ratio: 
Base load have high capital costs but low variable costs. They are the most economical supply 
option for the share of electricity demand that is constant. Peak load plants have low fixed costs 
but high variable costs. They are the cheapest supply option for the few hours during a year with 
highest demand. Classical power market economics translates this differentiation into graphical 
approaches to determine the optimal fuel mix (section 3.2). 

Any welfare, cost-benefit, or competitiveness analysis of electricity generation technolo­
gies need to take heterogeneity into account. It is in general not correct to assume that i) the average 
price of electricity from VRE (its marginal value) is identical the average power price, or that ii) 

2. The German spot market EPEX clears for each hour of the year as a uniform price; the ERCOT real-time market of 
Texas clears every five minutes for all 10,000 bus bars of the system 
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the price that different generation technologies receive is the same. Comparing generation costs of 
different technologies or comparing generation costs of a technology to an average electricity price 
has little welfare-economic meaning. Specifically, marginal cost of a VRE technology below the 
average electricity price or below the marginal costs of any other generation technology does not 
indicate that this technology is competitive; still this is repeatedly suggested by lobby groups, policy 
makers, and academics (BSW 2011, EPIA 2011, Kost et al. 2012, Clover 2013, Koch 2013). Instead, 
the marginal cost of VRE has to be compared to its marginal value. To derive that marginal value, 
one needs to take into account when and where it was generated and that forecast errors force VRE 
generators to sell their output relatively short before real time. After discussing the marginal cost 
of VRE in the following subsection, we will derive its marginal value taking these aspects into 
account. 

2.2 Marginal Costs: Levelized Electricity Costs 

It is common and convenient to report long-term marginal value and marginal cost in 
energy terms (€/MWh). We will follow this convention here. Long-term marginal costs are the 
discounted average private life-cycle costs (fixed and variable, including the cost of capital) of the 
last VRE generator built. We will assume there are no externalities in wind turbine manufacturing 
or construction (supported by Hoen et al. 2013), hence private costs equal social costs. In the field 
of energy economics, average life-cycle costs are commonly called levelized costs of electricity or 
levelized electricity costs (LEC). We define the LEC of a generator as 

Y 1 cyLEC = ∑ (1) 
y = 1  (1 + i)y gy 

where cy are the costs that occur in year y, gy is the amount of electricity generated in that year, i 
is the real discount rate, and Y is the life-time of the asset in years. 

Onshore wind LEC are globally currently in the range of 45–100 €/MWh, depending on 
wind resource quality, turbine market conditions, and discount rate. Offshore wind costs might be 
at 100–150 €/MWh and solar photovoltaic costs have reached similar levels after dramatic cost 
reductions during the past years. For an overview of LEC estimates for various generation tech­
nologies, see IPCC (2011, Figure 5), Borenstein (2012), and Schröder et al. (2013). IEA (2012) 
provides recent global investment cost estimates for wind and solar power. Seel et al. (2013) point 
out the considerable differences between solar costs in Germany and the US. 

In economic analyses, marginal costs are often a function of quantity. In the case of VRE, 
levelized costs might increase with penetration because land becomes scarce, or might decrease 
because of learning-by-doing and economies of scale. Nemet (2006), Hernández-Moro & Martı́nez-
Duart (2013) and Brazilian et al. (2013) discuss and quantify the drivers for solar cost reductions 
and Schindler & Warmuth (2013) report recent market data. Lindman & Söderholm (2012) and van 
der Zwaan et al. (2012) estimate wind learning curves. Nordhaus (2013) provides a critique of the 
specification of econometric models to estimate learning curves. NREL (2009) and 3Tier (2010) 
provide estimates of resource-constrained supply curves for wind power in the US. Baker et al. 
(2013) provide an extensive literature survey on both topics. 

Both learning and resource constraints happen outside the electricity market and a detailed 
analysis is beyond the scope of this paper. The electricity market determines the marginal value, 
which we will discuss in turn. 
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2.3 Marginal Value: Market Value 

We define the “market value” of a generation technology as the average discounted private 
life-time income from electricity sales, excluding any direct subsidies such as feed-in-tariffs, green 
certificates, or investments subsidies (Joskow 2011, Hirth 2013). We will assume perfect and com­
plete power markets in long-term equilibrium, hence the (private) market value coincides with the 
(social) marginal value, and we will use both terms interchangeably. The market value of wind 
power can then be written as 

Y p̄w
yMVw = ∑ y 

(2) 
y = 1  (1 + i) 

where p̄w
y is the average specific price (€/MWh) that wind generators received in year y. We will 

use “wind” for simplicity in the rest of this section. All analytics apply to solar power and any other 
generation technology as well. 

a) An exact definition of market value 

Assuming there exists one representative year, the wind market value equals the discounted 
average specific price of wind power in that representative year p̄w . This value can be written as 
the wind-weighted electricity price of all T time steps in all N price areas at all T lead-times: 

T N T
wp̄ = ∑ ∑ ∑ wt,n,s ⋅ p (3)t,n,s

t = 1  n = 1  s = 1

where w is the share of wind generation in time t at node n that was sold at lead-time s andt,n,s

pt,n,s is the respective price, one of the elements of the price array displayed in Figure 1. 
In some cases the relative price of electricity from wind power is of interest. We define 

the “value factor” (Stephenson 1973, Hirth 2013) of wind power VFw here as the market value over 
the load-weighted electricity price: 

w w dVF = p̄ /p̄ (4) 

T N T
dp̄ = ∑ ∑ ∑ dt,n,s ⋅ p (5)t,n,s

t = 1  n = 1  s = 1

where d is the share of load in time t at node n at lead-time s. Hence the market value can be t,n,s

written as the average price times the value factor 

w d wp̄ = p̄ ⋅ VF (6) 

In principle the market value p̄w can be estimated directly either from observed market prices or 
modeled shadow prices pt,n,s—to the extent that models can be regarded as realistic and markets 
can be treated as being complete, free of market failures, and in equilibrium. 

However, estimating the full array of shadow prices pt,n,s (Figure 1) would require a sto­
chastic model with sufficient high temporal and spatial resolution. Such a “supermodel” might not 

Copyright © 2015 by the IAEE. All rights reserved. 



The Optimal Share of Variable Renewables / 133 

Figure 2: From the Average Electricity Price to Wind’s Market Value (illustrative) 

Notes: At high penetration, timing and location as well as forecast errors typically reduce the market value. 

be always available or actually impossible to construct. In the following, we propose a feasible 
approximation to determine p̄w from several specialized models or data sources. 

b) An approximation of market value 

Hirth et al. (2013) have proposed an approximate derivation of market value. The idea of 
the approach is to estimate the impact of temporal variability, spatial variability, and forecast errors 
separately using specialized models or empirical datasets where a direct derivation is impossible. 
Along each dimension of heterogeneity there exist established modeling traditions that can be used 
for quantifications. We call the impact of timing on the market value of wind power “profile cost”, 
the impact of forecast errors “balancing cost” and the impact of location “grid-related cost”. De­
pending on the market design, these “costs” appear as reduced revenue or actual costs. 

w d w w wp̄  p̄ – cprofil – cbalancing – cgrid-related (7) 

Figure 2 illustrates how profile costs, balancing costs, and grid-related costs reduce the wind market 
value vis-á-vis the average load-weighted electricity price. This is typically the case at high pene­
trations. At low penetrations, the costs components might become negative, increasing the market 
value above the average electricity price, for example if solar power is positively correlated with 
demand. 

We define profile costs as the price spread between the load-weighted and wind-weighted 
day-ahead electricity price for all hours during one year. Profile costs arise because of two reasons. 
On the one hand, demand and VRE generation are often (positively or negatively) correlated. A 
positive correlation, for example the seasonal correlation of winds with demand in Western Europe, 
increases the value of wind power, leading to negative profile costs. On the other hand, at significant 
installed capacity, wind “cannibalizes” itself because the extra electricity supply depresses the mar­
ket price whenever wind is blowing. In other words, the price for electricity is low during windy 
hours when most wind power is generated. Fundamentally, profile costs exist because electricity 
storage is costly, recall physical constraint i). A discussion of profile costs and quantitative estimates 
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Figure 3: Average Electricity Price and Market Value as a Function of the Quantity of 
Wind Power in the System 

Notes: At low penetration, the wind market value can be higher than the average power price, because of positive correlation 
between generation and load. 

are provided by Lamont (2008), Borenstein (2008), Joskow (2011), Mills & Wiser (2012), Nicolosi 
(2012), Hirth (2013), and Schmalensee (2013). 

We define balancing costs as the difference in net income between the hypothetical situ­
ation when all realized generation is sold on day-ahead markets and the actual situation where 
forecast errors are balanced on intra-day and real-time or balancing markets. Fundamentally, bal­
ancing costs exist because frequency stability requires a balance of supply and demand and short-
term plant output adjustments are costly, recall iii). Balancing costs are reviewed by Smith et al. 
(2007), Obersteiner et al. (2010), Holttinen (2011), and Hirth et al. (2013). Hirth & Ziegenhagen 
(2013) discuss to what extend balancing markets reflect marginal costs. 

We define grid-related costs as the spread between the load-weighted and wind-weighted 
price across all price areas of a market. Grid-related costs exist because transmission is costly and 
wind speeds as well as land availability constrain wind power to certain sites, recall ii). Grid-related 
costs are estimated by Brown & Rowlands (2009), Lewis (2010), Hamidi et al. (2011), and Baker 
et al. (2013). 

c) Market value as a function of penetration 

The three cost components are not fixed parameters, but typically increase with penetration 
(Figure 3). This is no coincidence, but a consequence of the market-clearing role of prices: During 
windy times the additional electricity supply depresses the price; at windy locations, the additional 
supply depresses the price; and correlated wind forecast errors systematically lead to balancing 
costs. All three effects are stronger with larger installed capacities. In other words, both VF and 
p̄d are in general a function of the wind share q. 

d) Market value and “integration costs” 

A number studies discuss the costs that variability induces at the level of the power system 
under the term “integration costs” (Milligan et al. 2011, Holttinen et al. 2011). Ueckerdt et al. 
(2013a) discuss the “integration cost” literature in relation to the “market value” literature and 
Ueckerdt et al. (2013b) and Hirth et al. (2013) propose to define integration costs as the difference 
between market value and demand-weighted average electricity price. 
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Figure 4: Static Partial Equilibrium of the Electricity Market. 

Notes: The optimal share of wind power is given by the intersection of the market value of wind power (marginal benefits) 
and its levelized electricity costs (long-term marginal costs). The LEC curve can be upward-sloping because of limited land 
or downward-sloping because of endogenous learning. The market value curve is always downward-sloping. Installing more 
wind power than optimal, for example q0, leads to dead weight losses (DWL). Dynamic effects (grey) such as technological 
learning and price shocks can reduce marginal costs and benefits, shifting the optimal wind share q ∗

2.4 The Optimal Share of Wind Power 

a) Static (For a Given Power System) 

The optimal wind capacity q ∗ in a price-quantity-diagram is given by the point where 
marginal costs and marginal benefits intersect (Figure 4). The marginal benefit is not the average 
power price, but the market value of wind power. The market value can be either estimated directly 
(from a “supermodel”) or via the approximation proposed in section 2.3. 

∗ d ∗ ∗LEC(q ) =  p̄ (q ) ⋅ VF(q ) (8) 

An immediate consequence is that, even if marginal costs were flat and the average electricity price 
constant, competitiveness is not a “flip-flop” behavior. In the policy debate it is often suggested 
that, one cost of wind turbines have reached a certain level, “wind is competitive”. This is mis­
leading: at a certain cost level, a certain amount of wind power is competitive. 

b) Dynamic (For a Changing Power System) 

Dynamic effects change the optimal wind share. Such effects can affect either shift the 
marginal cost curve or the marginal benefit curve. Technological learning of wind turbine technol­
ogy shifts the LEC curve downwards. Increasing fuel or CO2 prices increase the electricity price 
level and shift the market value curve upwards. Introducing “system integration” measures such as 
more flexible thermal plant fleet, electricity storage, more price-elastic demand, and more intercon­
nector capacity typically pivot the marginal value curve clock-wise without affecting the electricity 
price level much (Hirth & Ueckerdt 2013b). 

For a given set of conditions, there exists always a certain optimal amount of wind power. 
Figure 5 displays such a set of market equilibria, the “optimality frontier”. If the wind share is 
below its equilibrium point, it increases until it reaches the frontier. If higher shares shall be reached 
under the same conditions, wind power requires subsidies. In the numerical analysis (section 5) we 
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Figure 5: Dynamics of the Market Equilibrium 

Notes: Under better conditions, such as reduced costs or increased costs of substitutes, a higher share of wind power is 
competitive (and welfare-optimal).Competitiveness is not a “flip-flop” behavior, but an equilibrium condition. Higher shares 
require subsidies and cause dead weight losses. 

Table 1: Overview of VRE Model Approaches 

Exogenous VRE capacity Endogenous VRE capacity 

Low resolution 
(years / continents) 

— Integrated Assessment Models 
Energy System Models 

High resolution 
(hours / countries) 

Power Market Models / 
Investment Planning Models 

This study 

estimate optimality frontiers: we estimate the optimal share as a function of cost reductions, and 
take additional dynamic effects into account via sensitivities. 

The following section reviews the model-based literature that estimates the optimal share 
of wind and solar power. Model approaches are assessed regarding their ability to estimate the three 
factors of equation (8): marginal costs, average electricity price, and value factor of VRE. 

3. REVIEW OF THE QUANTITATIVE LITERATURE 

The welfare-optimal electricity generation mix is one of the most researched topics in 
numerical model-based energy economics. This study identifies three strands of this literature: 
Models with low temporal and spatial resolution (integrated assessment and energy system models), 
models with high resolution that optimize the conventional mix for a given amount of VRE (power 
market or investment planning models), and high-resolution models with endogenous VRE capacity 
(like the one employed for this study), see Table 1. Electricity network models and pure dispatch 
or unit commitment models are not covered by this survey. These are sometimes used to test if a 
certain amount of VRE can be “accommodated” in a power system, but do not optimizes VRE 
capacity. The borderline between model classes is gradual, such that classification is to some degree 
subjective. 

Different classes of models have different merits and caveats when estimating the optimal 
VRE share. In the following, we structure the discussion along equation 8, which expresses the 
optimal share of, say, wind power as an equilibrium between marginal costs ( LEC(q ∗ )) and the 
average electricity price or electricity price level ( p̄d (q ∗ )) times the value factor or relative price 
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Table 2: Drivers and Model Requirements. 

Driver Model requirement 

Levelized electricity cost 
LEC 

technological learning of VRE 
VRE resource supply curve 
raw material prices 

global geographic scope 
- (data issue) 
global scope, multi-sector 

Average electricity price 
(Electricity price level) 

dp̄ 

fuel prices 
carbon price 
electricity demand 

global scope, multi-sector 
regional scope, multi-sector 
multi-sector 

share of VRE — 
flexibility of thermal plants high temporal resolution, power 

system details 

Value factor 
(Electricity price structure) 

VF 

hydro reservoir power 
transmission grid constraints 
electricity storage 

consecutive time 
regional scope, high spatial resolution 
high temporal resolution, consecutive 
time 

VRE forecast quality 
VRE generation profile 

power system details 
high temporal resolution 

of wind power ( VF(q ∗ )). Some models are well suited to estimate marginal costs, others are well 
suited to estimate the average electricity price, and some are good in estimating the value factor. 

Table 2 lists drivers behind these three factors, and names necessary model features to be 
able to model the respective driver endogenously. For example, the LEC is determined by tech­
nological learning. Modeling learning endogenously as an experience curve requires a global cov­
erage, because VRE technology is traded globally and significant learning takes place at the level 
of equipment manufacturing. 

In general, low-resolution models with broad scope tend to be better suited to estimate the 
marginal cost and the average electricity price, while high-resolution models with narrow scope are 
better equipped to estimate the value factor. 

3.1 Low-resolution Models 

For numerical and complexity reasons, there is a trade-off between model scope and res­
olution. Broad multi-sector models with a large geographic coverage have to limit temporal and 
spatial resolution. 

a) Integrated assessment models 

“Integrated Assessment Models” (IAMs) are numerical macroeconomic models that typ­
ically cover the entire world and all sectors of the economy. They are used to determine the optimal 
share of wind and solar in the electricity generation mix for example as part of greenhouse gas 
mitigation studies. Well-known IAMs include GCAM (Calvin et al. 2009), IMAGE (van Vliet et 
al. 2009), MESSAGE (Krey and Riahi 2009), TIAM (Loulou et al. 2009), MERGE (Blanford et 
al. 2009), EPPA (Morris 2008), and ReMIND (Leimbach et al. 2010). While these models differ 
considerable in terms of methodology, they usually have a temporal resolution of one or several 
years and a geographic resolution of world regions, such as Europe. They usually have a temporal 
scope until 2050 or 2100. 
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IAMs are capable to capture important drivers of marginal costs and the average electricity 
price. Cost drivers include global endogenous technological learning and, in the case of biomass, 
land use by other sectors. The average electricity price is impacted by macroeconomic growth, the 
carbon price, fuel prices, and the electricity demand for example driven by the electrification of the 
heat and transport sector, all of which are usually endogenous to these models. 

However, they are not able to explicitly represent the heterogeneity of the good “elec­
tricity” in any of its three dimensions. They typically treat electricity as one sector with one price. 
Variability needs to be approximated using parameterizations. Luderer et al. (2013) and Baker et 
al. (2013) present overviews of how VRE are modeled and Ueckerdt et al. (2010a, 2010b) and 
Sullivan et al. (2013) propose new approaches for variability representation. 

In a comprehensive survey of model inter-comparison studies, Fischedick et al. (2011, 
figure 10.9) report a median global VRE share of total electricity consumption of 10% by 2050 
without climate policy and between 15–20% under climate policy. 

b) Energy system models 

“Energy system models” have a more narrow scope and a somewhat finer resolution. They 
are partial equilibrium models of the energy sector of one world region. Some models, such as 
PRIMES (European Commission 2011, Eurelectric 2013), MARKAL/TIMES (Loulou et al. 2004, 
2005, Blesl et al. 2012), or the World Energy Model (IEA 2013) cover all three energy subsectors 
heat, electricity, and transportation. Others focus on the electricity sector, such as ReEDs (Short et 
al. 2003, 2011), US-Regen (Blanford et al. 2012), SWITCH (Nelson et al. 2012) and CAPEW 
(Brun 2011) for North America, and LIMES (Haller et al. 2012), PERSEUS (Rosen et al. 2007), 
and DEMELIE (Lise & Kruseman 2008) for Europe. Finally, some models cover the power and 
natural gas sectors and include a gas supply curve and gas infrastructure constraints, such as LI­
BEMOD (Aune et al. 2001). These models typically have a geographical resolution of countries or 
states and represent temporal variability by modeling typical days or weeks or modeling ten to 50 
non-consecutive time slices. They are often applied to time horizons between 2030 and 2050. 

The capabilities and shortcomings of IAMs discussed above in general apply to energy 
system models, but to a lesser extent. Global phenomena like technological learning or fuel markets, 
including carbon and biomass, cannot be modeled. However, regional carbon prices and electricity 
demand from the heat and power sector are often endogenous. Often these models have more 
detailed supply curves for wind and solar power than IAMs, allowing estimating their LEC quite 
accurately at a finer geographic resolution. Variability in the power sector can be modeled, but is 
subject to the models’ limited resolution. If variability is not parameterized somehow, the low 
resolution introduces a bias towards too high VRE shares. Nicolosi (2011, 2012) reports estimates 
of the bias introduced by low resolution: the capacity mix is biased towards base load technologies, 
the capacity factor of VRE is overestimated, and the marginal value of VRE is overestimated. Some 
models use non-consecutive “time slices” to represent variability. However, time slices impedes to 
model electricity storage and hydro reservoirs, and selecting appropriate time slices is far from 
trivial given the multiple time series (wind, solar, load) in all model regions. Furthermore, these 
models often lack technical constraints of power systems, such as combined heat and power (CHP) 
generation, ancillary services, and ramping constraints of thermal generators. Typically, they are 
not back-tested to replicate historical power plant dispatch, electricity price, or interconnector flow 
patterns. 

Knopf et al. (2013) report on a European model intercomparison project that covers both 
IAMs and energy system models. They report median VRE shares of total electricity consumption 

Copyright © 2015 by the IAEE. All rights reserved. 



The Optimal Share of Variable Renewables / 139 

in the European Union of 11% without and 25% with climate policy by 2050 in the reference 
scenarios, but shares of 50–60% if nuclear power is restricted or assumption on VRE are more 
optimistic. Nelson et al. (2012) report somewhat lower numbers for the Western Interconnection of 
the United States. 

Both IAMs and energy system models are tools that focus on estimating marginal costs 
and the average power price, but are not appropriate to estimate the value factor. Instead, parame­
terizations of VF have to be taken from high-resolution models. Moreover, these low-resolution 
models cannot be used to assess the impact of sectoral policies and technological changes. For 
example, the impact of heat storages on the marginal value of wind power via CHP plant flexibility 
can only be assessed if CHP generation is modeled, which is usually only the case in high-resolution 
models. We will discuss high-resolution models in turn. 

3.2 High-resolution Models with Exogenous VRE 

Vertically integrated utilities have used “investment planning models” of “expansion plan­
ning models” for decades to optimize their capacity mix. These models explicitly account for 
variable demand by applying a high, for example hourly, resolution. This comes at the price of 
reduced scope: these models are partial equilibrium models of a single or few countries, and are 
restricted to the power sector. In liberalized markets this class of models is often called “power 
market models” and used for fundamental long-term price projections. We discuss these models 
here for two reasons, even though they do not model VRE capacity endogenously: on the one hand, 
they are sometimes used to calibrate parameterizations of low-resolution models, on the other hand 
they are the precursors of the models discussed in section 3.3. 

The classical version of these models is based on screening curves and load duration curves 
and can be solved graphically to derive the cost-minimal capacity mix (Stoughton et al. 1980, 
Grubb 1991, Stoft 2002, Green 2005). Because several constraints of power systems cannot be 
represented in load duration curves, numerical models were developed starting in the 1960s (Bes­
siere 1970), for instance WASP (Jenkins & Joy 1974, Covarrubias 1979). 

Current power market models account for more details and constraints of power systems, 
such as CHP generation, ancillary services, pumped hydro storage, price-elastic demand, imports 
and exports, start-up and ramping costs of thermal plants, and hydro reservoirs. These models have 
typically a temporal resolution of 15 to 120 minutes and a spatial resolution of countries or bidding 
areas. They are usually able to reproduce hourly historical price, dispatch, and export patterns. 
Power market models are typically used in utility companies and consulting firms to forecast prices 
and guide investment decisions. 

While such commercial models are not published, we summarize VRE-related academic 
studies based on such models in the following. Krämer (2002), Bushnell (2010), Green & Vasilakos 
(2011), and Nagl et al. (2012) compare the optimal long-term thermal capacity mix with and without 
VRE. They find that overall thermal capacity is only slightly reduced, but that there is a noticeable 
shift from baseload to mid- and peakload technologies with the introduction of VRE. Nagl et al. 
(2011), Tuohy & O’Malley (2011), and Lamont (2012) model the impact of VRE on storage. These 
models are also used estimate wind and solar market value, often as a function of penetration. 
Recent estimates are provided by Swider & Weber (2006), Lamont (2008), Fripp and Wiser (2008), 
Mills & Wiser (2012, 2013), Nicolosi (2012), and Hirth (2013), who also surveys the respective 
literature. Early studies include Martin & Diesendorf (1983), Grubb (1991), and Rahman & Bouz­
guenda (1994). 
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All these studies take VRE capacity as given and only optimize the thermal plant fleet. 
This can be explained by the fact that VRE played only a marginal role at the times when these 
models were developed. Furthermore, since VRE were often owned by independent power pro­
ducers and not the integrated utilities that operated such models, they were not subject to the utility’s 
optimization. Today’s commercial power market models usually still regard VRE investments as 
exogenous, since those are driven by subsidies and subject to political decisions rather than subject 
to market prices. 

3.3 High-resolution Models with Endogenous VRE 

Surprisingly few studies optimize VRE capacities based on high-resolution models. Those 
that do so usually stem from the tradition of power market models and have endogenized VRE 
capacity. These models endogenized the VRE value factor by providing high resolution and power 
system details. However, for reasons of scope, factors like technological learning, power demand, 
and fuel and carbon prices are typically exogenous. 

a) Pure long-term models (green field) 

Pure long-term models derive optimal VRE capacities “from scratch”, without taking ex­
isting infrastructure such as power plants into account, but they usually assume today’s demand 
structure. 

DeCarolis & Keith (2006) derive the cost-minimal electricity mix for Chicago, but consider 
only one thermal technology. They find that wind power needs a CO2 price of at least 150 $/t to 
be competitive. Doherty et al. (2006) apply a simple linear investment-dispatch model to Ireland, 
finding the optimal amount of wind capacity strongly dependent on the price of CO2 and gas. Olsina 
et al. (2007) derive the optimal capacity mix for Spain. They find that at investment costs of 1200 
€/kW virtually no wind power is installed, but if costs drop by 50%, about 20 GW should be 
installed. One drawback of this study is that the simulated wind profiles do not capture spatial 
correlations well. Also, the electricity system is modeled as a merit-order approach that omits must-
run constraints, storage, or international trade. Lamont (2008) finds that no wind power should be 
deployed if annualized fixed costs amount to 120 $/kW. If costs drop to 85 $/kW, a third of total 
capacity should be wind power. 

b) Models with existing power plants 

A few studies do take existing infrastructure into account. Neuhoff et al. (2008) apply an 
elaborated investment-dispatch model with 1040 time steps per year to optimize gas-fired plant and 
wind investments in the UK until 2020, also accounting for grid constraints. They report an optimal 
wind share of 40% based on very optimistic wind cost assumptions. Möst & Fichtner (2010) couple 
an investment model with a 15 min-resolution dispatch model. They find that both wind and solar 
cannot be efficiently deployed in Germany under current conditions. Müsgens (2013) applies a two-
hourly model of Europe. Under a strict emission cap, a limit on nuclear power, and endogenous 
technology learning, he finds optimal shares of 25% wind and 10% solar power by 2050. 

The model EMMA, which will be introduced in the following section, belongs to this last 
class of models. It is comparable to Neuhoff et al. (2008), but covers a larger geographic region, 
like Müsgens (2013). While Müsgens uses his model to project the optimal amount of VRE capacity 
under today’s political constraints, we use EMMA to understand the impact of a variety of policy, 
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price, and technology shocks on the optimal share. Hence, while Müsgens (2013) is comparable to 
this study in terms of modeling methodology, the research questions are quite complementary. 

4. NUMERICAL MODELING METHODOLOGY 

This section introduces the European Electricity Market Model EMMA, which is used in 
the following section to estimate the optimal share of wind and solar power both in the medium 
and long term. EMMA is a stylized numerical dispatch and investment model of the interconnected 
Northwestern European power system that has been applied previously in Hirth (2013) and Hirth 
& Ueckerdt (2013a). In economic terms, it is a partial equilibrium model of the wholesale electricity 
market. It determines optimal or equilibrium yearly generation, transmission and storage capacity, 
hourly generation and trade, and hourly market-clearing prices for each market area. Model for­
mulations are parsimonious while representing VRE variability, power system inflexibilities, and 
flexibility options with appropriate detail. This section discusses crucial features verbally.3 

4.1 The Power Market Model EMMA 

EMMA minimizes total costs with respect to investment, production and trade decisions 
under a large set of technical constraints. Markets are assumed to be perfect and complete, such 
that the social planner solution is identical to the market equilibrium and optimal shares of wind 
and solar power are identical to competitive shares. The model is linear, deterministic, and solved 
in hourly time steps for one year. 

For a given electricity demand, EMMA minimizes total system cost, the sum of capital 
costs, fuel and CO2 costs, and other fixed and variable costs, of generation, transmission, and storage 
assets. Capacities and generation are optimized jointly. Decision variables comprise the hourly 
production of each generation technology including storage, hourly electricity trade between re­
gions, and investment and disinvestment in each technology, including wind and solar power. The 
important constraints relate to energy balance, capacity limitations, and the provision of district 
heat and ancillary services. 

Generation is modeled as eleven discrete technologies with continuous capacity: two VRE 
with zero marginal costs—wind and solar, six thermal technologies with economic dispatch— 
nuclear, lignite, hard coal, combined cycle gas turbines (CCGT), open cycle gas turbines (OCGT), 
and lignite carbon capture and storage (CCS), a generic “load shedding” technology, and pumped 
hydro storage. Hourly VRE generation is limited by generation profiles, but can be curtailed at zero 
cost. Dispatchable plants produce whenever the price is above their variable costs. Storage is op­
timized endogenously under turbine, pumping, and inventory constraints. Existing power plants are 
treated as sunk investment, but are decommissioned if they do not cover their quasi-fixed costs. 
New investments including VRE have to recover their annualized capital costs from short-term 
profits. 

The hourly zonal electricity price is the shadow price of demand, which can be interpreted 
as the prices on an energy-only market with scarcity pricing. This guarantees that in the long-term 
equilibrium the zero-profit condition holds. As numerical constraints prevent modeling more than 
one year, capital costs are included as annualized costs. 

3. Model documentation, equation, GAMS code, and input data are published under creative common CC BY-SA 3.0 
license and are available at http://www.pik-potsdam.de/members/hirth/emma. 
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Demand is exogenous and assumed to be perfectly price inelastic at all but very high 
prices, when load is shed. Price-inelasticity is a standard assumption in dispatch models due to their 
short time scales. While investment decisions take place over longer time scales, we justify this 
assumption with the fact that the average electricity price does not vary dramatically between model 
runs. 

Combined heat and power (CHP) generation is modeled as must-run generation. A certain 
share of the cogenerating technologies lignite, hard coal, CCGT and OCGT are forced to run even 
if prices are below their variable costs. The remaining capacity of these technologies can be freely 
optimized. Investment and disinvestment in CHP generation is possible, but the total amount of 
CHP capacity is fixed. Ancillary service provision is modeled as a must-run constraint for dispatch-
able generators that is a function of peak load and VRE capacity. 

Cross-border trade is endogenous and limited by net transfer capacities (NTCs). Invest­
ments in interconnector capacity are endogenous to the model. As a direct consequence of our price 
modeling, interconnector investments are profitable if and only if they are socially beneficial. Within 
regions transmission capacity is assumed to be non-binding. 

The model is linear and does not feature integer constraints. Thus, it is not a unit com­
mitment model and cannot explicitly model start-up cost or minimum load. However, start-up costs 
are parameterized to achieve a realistic dispatch behavior: assigned base load plants bid an electricity 
price below their variable costs in order to avoid ramping and start-ups. 

The model is fully deterministic. Long-term uncertainty about fuel prices, investment costs, 
and demand development are not modeled. Short-term uncertainty about VRE generation (day­
ahead forecast errors) is approximated by imposing a reserve requirement via the ancillary service 
constraint, and by charging VRE generators balancing costs. 

Being a stylized power market model, EMMA has significant limitations. An important 
limitation is the absence of hydro reservoir modeling. Hydro power offers intertemporal flexibility 
and can readily attenuate VRE fluctuations. Hence, results are only valid for predominantly thermal 
power systems. Demand is assumed to be perfectly price inelastic up to high power prices. More 
elastic demand would help to integrate VRE generation. However, it is an empirical fact that demand 
is currently very price-inelastic in Europe and possible future demand elasticities are hard to esti­
mate. Technological change is not modeled, such that generation technologies do not adapt to VRE 
variability. Not accounting for these possible sources of flexibility potentially leads to a downward-
bias of optimal VRE shares. Hence, results can be interpreted as conservative estimates. 

EMMA is calibrated to Northwestern Europe and covers Germany, Belgium, Poland, The 
Netherlands, and France. In a back-testing exercise, model output was compared to historical market 
data from 2008–10. Crucial features of the power market can be replicated fairly well, like price 
level, price spreads, interconnector flows, peak / off-peak spreads, the capacity and generation mix. 

4.2 Input Data 

Electricity demand, heat demand, and wind and solar profiles are specified for each hour 
and region. Historical data from the same year (2010) are used for these time series to preserve 
empirical temporal and spatial correlation of and between parameter as well as other statistical 
properties. These properties and correlations crucially determine the optimal VRE share. VRE 
profiles are based on historical weather data from the reanalysis model ERA-Interim and aggregate 
power curves are used to derive profiles. Load data were taken from ENTSO-E. Heat profiles are 
based on ambient temperature. Based on Hirth & Ziegenhagen (2013), we assume a balancing 
reserve requirement of 10% of peak load plus 5% of installed VRE capacity. Based on a literature 
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survey by Hirth et al. (2013), balancing costs for wind and solar were assumed to be 4 €/MWh, 
independent of the penetration rate. 

Fixed and variable generation costs are based on IEA & NEA (2010), VGB Powertech 
(2011), Black & Veatch (2012), and Schröder et al. (2013). Fuel prices are average 2010 (not 2011) 
European market prices, 9 €/MWht for hard coal and 18 €/MWht for natural gas, and the CO2 price 
is 20 €/t. Summer 2010 NTC values from ENTSO-E were used to limit interconnection capacity. 
CHP capacity and generation is from Eurelectric (2011b). A discount rate of 7% in real terms is 
used for all investments, including transmission, storage and VRE. 

For wind power we assume investment costs of 1300 €/kW and O&M costs of 25 €/kWa. 
At 2000 full load hours, as in Germany, this equals LEC of 68 €/MWh. The corresponding numbers 
for solar power are 1600 €/kW, 15 €/kW and 180 €/MWh. Learning and resource constraints are 
assumed to roughly offset each other such that wind and solar supply curves are flat. 

4.3 Representing Different Aspects of Variability in EMMA 

EMMA models endogenously important aspects of the three dimensions of heterogeneity 
of electricity and correspondingly the costs of VRE variability. Most importantly, the model features 
an hourly resolution, uses high-quality hourly input data, and accounts for several restrictions that 
limit the flexibility of the rest of the power system. In other words, the model accounts quite well 
for profile costs. Other costs of variability are added as cost mark-ups, as proposed in section 2.3. 

However, other aspects are only modeled quite roughly. Geographically, EMMA features 
only moderate granular detail of countries. International trade is constrained, but internal grid re­
strictions are not modeled. Furthermore, trade is restricted by NTCs and physical load flows are 
not modeled. Schumacher (2013) estimates grid-related costs to be small in Germany both for wind 
and solar, hence we set them to zero. 

Forecast errors are not modeled explicitly. EMMA features a spinning reserve requirement 
that is a function of installed VRE capacity. In addition, VRE generators pay for reserve activation 
in form of a constant balancing cost charge of 4 €/MWh. 

4.4 Optimality at Different Time Horizons 

The optimal share of VRE depends crucially on how flexibly the model is allowed to adjust 
(Ueckerdt et al. 2013a, Baker et al. 2013). A crucial point is the previously-existing capital stock, 
where the literature uses three different approaches. 

One option is to take the existing generation and transmission infrastructure as given and 
disregard any changes. The optimization reduces to a sole dispatch problem. We label this the short-
term perspective. Another possibility is to disregard any existing infrastructure and optimize the 
electricity system “from scratch” as if all capacity was green-field investment. This is the long-term 
perspective. Finally, one can take the existing infrastructure as given, but allow for endogenous 
investments and disinvestments. We call this the medium term. Note that the expressions short term 
and long term are not used to distinguish the time scale on which dispatch and investment decisions 
take place, but refer to the way the capital stock is treated. While all three time horizons are 
analytical concepts that never describe reality entirely correctly, we believe the long term as defined 
here is a useful assumption to analyze European power systems in 2030 and beyond. In systems 
with a higher rate of capital turnover the assumption might be quite valid already in 2020. 
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In section 5 we present mid-term and long-term results. Typically the long-term optimal 
share of VRE is higher than the mid-term value, since only in the long-term VRE saves capital 
costs. 

For the short, mid, and long-term framework corresponding welfare optima exists, which 
are, absent of market failures, identical to the corresponding market equilibria. It is only in the 
long-term equilibrium that all profits are zero, including those of wind and solar power (Steiner 
1957, Boiteux 1960, Crew et al. 1995). EMMA estimates the short, mid, or long-term equilibrium, 
but not the transition path towards the equilibrium or out-of-equilibrium situations. 

5. NUMERICAL RESULTS 

In this section we use EMMA to estimate the optimal amount of wind and solar power at 
various levels of cost reduction of up to 30% for wind and 60% for solar. For each cost level, the 
power system is optimized, including wind and solar capacity. Results are mostly reported as optimal 
shares of total electricity consumption. We focus on long-term optima, but also discuss the medium 
term in 5.7. The impact of different aspects of variability is reported and the effects of a number 
of price, policy, and technology shocks are examined. All findings should be interpreted cautiously, 
keeping model and data limitations in mind that have been highlighted in sections 3 and 4. 

Assuming that onshore wind costs can be reduced by 30% to 50 €/MWh in the long term, 
we find that the optimal wind share on Northwestern Europe is around 20%, three times today’s 
level, but lower than some policy targets. In contrast, even with solar costs 60% below today’s 
levels to 70 €/MWh, the optimal solar share would be close to zero. We find that variability dra­
matically impacts the optimal wind share. Specifically, temporal variability has a huge impact on 
these results: if winds were constant (flat), the optimal share would triple. In contrast, forecast errors 
have only a moderate impact: without balancing costs, the optimal share would increase by less 
than half. The large impact of variability indicates that models that cannot represent variability 
explicitly need to approximate it carefully, and it implies that analyses which ignore variability are 
strongly biased. These “benchmark” results assume 2011 market prices for inputs and full avail­
ability of all generation technology options. 

We then assess the effect of three shocks that are often seen as major determinants of VRE 
deployment: climate policy, technical integration measures, and fuel prices. We find that they do 
not change the picture qualitatively. Carbon pricing and higher fuel price can have a moderate 
positive impact on optimal wind shares, but sometimes even reduce it as they trigger baseload 
investments; storage has an insignificant impact; the impact of interconnector expansion and new 
turbine technology is positive, but moderate in size; flexibilizing thermal plants has the largest 
impact. The one case where we find very high optimal VRE shares (45% wind plus 15% solar) is 
a combination of high carbon prices and unavailability of the low-carbon technologies nuclear 
power and CCS. 

5.1 Optimal Wind Share 

The long-term market value of wind power is displayed in Figure 6. As theoretically 
discussed in section 2.3 and empirically estimated in Hirth (2013), the market value is a downward-
sloping function of wind penetration: it drops from about 71 €/MWh at low penetration to 40 €/ 
MWh at 30% penetration. The intersection of the market value curve with LEC characterizes the 
optimal wind share. The demand-weighted average price declines, but only slightly from 76 €/MWh 
to 71 €/MWh. 
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Figure 6: Wind’s Market Value Falls with Penetration 

Notes: The intersection between LEC and market value gives the optimal share (section 2.4). At LEC of 68 €/MWh the 
optimal share is around 2%; if generation costs fall by 30%, the optimal share is about 20%. 

Figure 7: The Optimal Share of Wind Power in Total Electricity Consumption as Function 
of Wind Power Cost Reduction under Benchmark Assumptions 

Notes: In Northwestern Europe, the share increases from 2% to 20%. 

Figure 7 shows the optimal share as a function of decreasing costs (“optimality frontier”). 
At current cost levels of about 68 €/MWh, only marginal amounts of capacity are competitive in 
Northwestern Europe. However, if costs decrease by 30% to 48 €/MWh, wind power optimally 
supplies 20% of Northwestern European electricity consumptions, three times as much as today. In 
other words, if deployment subsidies are phased out, wind power will continue to grow, but only 
if costs decrease. We use these results that are based on best-guess parameter assumptions as 
benchmark. 

5.2 Optimal Solar Share 

Solar power has a marginal value of about 75 €/MWh at low penetration, compared to 
LEC of currently 180 €/MWh, hence its optimal share is zero. We model cost reductions of up to 
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Figure 8: The Impact of Temporal Variability and Forecast Errors 

60% (LEC of 70 €/MWh), but even then the optimal share is small (2%). However, in a few cases 
solar becomes competitive in significant amounts (section 5.5). Otherwise we will focus on wind 
power in the remainder of the section due to space constraints. 

Some authors claim that solar power becomes competitive once it reaches “grid parity”, 
which is usually understood as costs falling below end-consumer price. However, grid parity has 
little to do with economic efficiency. Not only does this measure ignore electricity price hetero­
geneity (recall section 2), but also that retail electricity prices comprise mainly taxes, levies, and 
grid fees. Since decentralized solar generation saves at best marginal amounts of grid costs, the 
market value is the appropriate electricity price to evaluate solar power with (Hirth 2014). 

5.3 The Impact of Variability 

As laid out in section 2, different aspects of variability impact the optimal amount of VRE 
capacity. Here we quantify two of them, temporal variability and forecast errors. EMMA lacks a 
representation of the transmission grid, such that the impact of locational constraints on the optimal 
share cannot be assessed. We find that variability has a dramatic impact (Figure 8). If wind gen­
eration was constant, its optimal share would rise above 60%. The impact of forecast errors is much 
smaller: switching off the reserve requirement and balancing costs increases the optimal share by 
only eight percentage points. This endorses previous findings that temporal variability is signifi­
cantly more important for welfare analysis than uncertainty-driven balancing (Mills & Wiser 2012, 
Hirth et al. 2013). Relaxing grid connections has minor impact, but recall that only cross-border 
constraints were taken into account in the first place. These findings indicate how dramatically 
results can be biased if variability is ignored. 

5.4 The Impact of Integration Options 

Many technical measures have been proposed to better integrate VRE into power systems, 
and specifically, to alleviate the drop of market value. Electricity storage, interconnector capacity, 
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Figure 9: The Effect of Storage Capacity 

Notes: Storage has a very small effect on optimal wind deployment. 

more flexible thermal plants, and a different design of wind turbines are the most prominent (Mills 
& Wiser 2013, Hirth & Ueckerdt 2013b). 

Both storage and interconnector capacity are endogenous to the model and hence deployed 
at their optimal level in the benchmark run. Here we test their impact of optimal wind shares by 
setting their capacities exogenously to zero and twice current capacity. 

The first surprising result: wind deployment is only slightly affected by pumped hydro 
storage capacity (Figure 9). Doubling storage capacity from existing levels results in an optimal 
share of 22%, setting storage capacities to zero results in 20%. This option would cost about €
1.4bn per year. The driver behind this outcome, besides the fact that doubling storage capacity 
means adding relatively little capacity compared to installed wind capacity, is the design of pumped 
hydro plants. They are usually designed to fill the reservoir in about eight hours while wind fluc­
tuations occur mainly on longer time scales. Thus wind requires a storage technology that has a 
large energy-to-power ratio than pumped hydro storage. 

Higher long-distance transmission capacity helps to balance out fluctuations in VRE gen­
eration profiles and allows building where resources are best. Doubling interconnector capacity 
gives a four percentage point higher optimal wind share than setting interconnector capacity to zero 
(Figure 10). This measure would cost about € 0.8bn per year. Hence, in terms of increased pene­
tration per Euro, interconnector investments are several times more efficient as wind power inte­
gration measure than storage investments. 

Technical inflexibility of thermal plants impacts electricity prices and reduces the optimal 
share of VRE. EMMA features two important must-run constraints for thermal plants, CHP gen­
eration and ancillary service provision. Heat storages or heat-only boiler can be used to dispatch 
CHP plants more flexibly. Batteries, consumer appliances, or power electronics could help supplying 
ancillary services. Figure 11 shows the effect of taking these constraints out. Switching off CHP 
must-run increases the optimal share by three percentage points, switching off the ancillary service 
constraint by three percentage points, and both constraints by five points. 

Wind turbine technology is still evolving quickly (IEA 2012, MAKE 2013). Low wind-
speed turbines with higher hub heights and larger turbine-to-generator ratios have entered the mar-
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Figure 10: The Effect of Interconnector Capacity 

Notes: Interconnection capacity has a moderate impact on optimal wind deployment at all wind cost levels. 

Figure 11: The Effect of Thermal Plant Flexibility 

Notes: More flexible thermal plants quite strongly increase optimal wind deployment, especially at high cost reduction 
levels. 

ket, resulting in flatter generation profiles. We tested the impact of flatter profiles by using a more 
steady offshore profile (without changing costs). As a consequence, the optimal share rises by almost 
three percentage points (Figure 12). Assessing the cost of thermal plant flexibilization and advanced 
wind turbine is beyond the scope of this analysis. 

All integration measures increase the optimal wind share. The impact of doubling storage 
capacity on optimal wind deployment is very small, the impact of doubling interconnector capacity 
and changing the wind generation profile is moderate, and the impact of thermal plant flexibility is 
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Figure 12: The Effect of a Flatter Profile 

Notes: A flatter generation profile increases optimal deployment moderately, but only at high cost reduction levels. 

quite large. This does neither imply that these measures should be ignored or should be pursued, 
nor does it imply a ranking between these three options, as each measure comes at a cost. However, 
comparing storage and interconnector capacity in terms of cost and impact on wind deployment it 
seems that interconnector expansion is a more efficient integration option. 

5.5 The Impact of Climate Policy 

Many observers suggest that CO2 pricing has a positive and significant impact on VRE 
competitiveness. Many European market actors argue that during the 2020s, renewable subsidies 
should be phased out, and expect VRE to continue to grow, driven by carbon prices. We estimate 
the optimal wind share at different CO2 prices. 

Figure 13 displays the optimal wind share at prices of 0 €/t, 20 €/t, and 100 €/t. As one 
would expect, a CO2 price of zero results in less deployment than the benchmark price of 20 €/t. 
Lower costs of emitting plants reduce the marginal value of wind power, and optimal deployment 
is close to zero. 

Yet increasing the CO2 price further, from 20 €/t 100 €/t, shows a surprising result: wind 
deployment is reduced. Figure 14 shows in more detail the non-monotonic effect of CO2 pricing 
on VRE deployment, assuming high cost reductions: the optimal wind share increases initially 
steeply with higher CO2 prices, peaks at 40 €/t, and decreases afterwards. The optimal solar share 
rises until 40 €/t and remains relatively flat afterwards, such that the compound VRE share always 
remains below 25% and even decreases to 15% at 180 €/t CO2. This might look counterintuitive 
at first glance. 

The reason for this surprising behavior is investments in competing low-carbon technol­
ogies. Nuclear power and CCS are the only dispatchable low-carbon technologies in the model, 
and these two are base load technologies with very high investment, but very low variable costs. 
Baseload capacity reduces the marginal value of VRE and hence its optimal share. Carbon prices 
below 40 €/t do not trigger any nuclear or CCS investments, such that up to that point carbon 
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Figure 13: Optimal Wind Share under Different CO2 Prices 

Notes: Arrows indicate how curves shift as carbon prices increase. 

Figure 14: Optimal Wind and Solar Share under Different CO2 Prices, Assuming High 
Cost Reduction 

Notes: Shares increase with the carbon price up to the point where low-carbon baseload investments become profitable and 
decrease afterwards. 

pricing has a positive impact of VRE via higher costs of emitting plants. Beyond 40 €/t, the baseload 
investment effect dominates the emission cost effect. To benefit from stricter climate policy, VRE 
technologies would need low-carbon mid and peak load generators as counterparts. In this context 
it is important to recall that generation from biomass is not included in the model. If biomass would 
be available sustainably in large volumes, it could fill this gap and possible change results signifi­
cantly. 
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Figure 15: Optimal Wind Share under 100 €/tCO2 and Different Technology Assumptions 

Notes: Excluding low-carbon alternatives leads to dramatically higher shares of wind (and solar) power. The top line 
decreases because solar power investments are triggered. The combined VRE share keeps rising with cost reductions. 

Figure 16: Contour Plot of the 40% Wind Share 

Notes: The lines indicate which LEC / CO2 price combination would be needed to achieve 40% wind penetration without 
wind subsidies. Above/left of the lines wind penetration is above 40%, below/right of the lines it is below 40%. Without 
restrictions on technologies, wind LEC need to fall below 40 €/MWh to trigger 40% penetration, no matter what the CO2 

price is. The investment cost for nuclear is 4000 €/kW. 

Of course this effect can only appear if investments in nuclear and/or CCS are possible. 
However, uncertainty around costs, safety, waste disposal, and public acceptance could imply that 
these technologies are only available at prohibitive costs. Without nuclear power, the optimal wind 
share doubles at 100 €/t CO2 and without both technologies it reaches more than 45% market share 
(Figure 15). In addition, the optimal solar share reaches 15%, such that VRE would supply almost 
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Figure 17: The Effect of Fuel Price Shocks 

Notes: As expected, lower gas prices reduce and higher coal prices increase the optimal wind share. However, higher gas 
prices reduce the optimal share. The reason is the investments in baseload technologies triggered by high gas prices. 

two thirds of electricity. However, the unavailability of nuclear and CCS comes at the price of 
increased emissions and welfare losses: CO2 emissions increase by 100–200% (depending on VRE 
cost reductions), the electricity price increases by 15–35%, and total system costs by 13–25%. In 
absolute terms, welfare is reduced by 15–30 €bn per year, which would increase if the assumption 
of price-inelastic demand was relaxed. 

Figure 16 shows which combination of LEC and carbon price would be needed to trigger 
a 40% wind market share in a contour plot. 

Several conclusions can be drawn regarding the effect of CO2 pricing on the optimal 
amount of VRE deployment: while increasing the CO2 price from low levels increases optimal 
VRE shares, increasing it further reduces VRE deployment. The price that maximizes wind de­
ployment is around 40 €/t, just before nuclear investments are triggered. Carbon pricing is not able 
to drive up the VRE share above 25%. These findings are obviously sensitive to the availability of 
alternative low-carbon generation technologies: excluding base load technologies like nuclear and 
CCS helps wind and solar dramatically. In general, this section indicates how important it is to take 
the adjustment of the capital stock into account when evaluation policies. 

5.6 The Impact of Fuel Prices and Investment Costs 

Rising fuel prices are often believed to drive renewables expansion. At first glance, the 
situation seems to be straightforward: higher input prices increase the costs of fossil generation, 
and hence increase the marginal value of competing technologies including VRE. In this subsection, 
hard coal and natural gas prices are varied to understand the effect of higher fossil fuel prices on 
optimal VRE deployment. As in the case of CO2 pricing, results might come as a surprise. 

Increasing the price of coal has the expected effect: doubling coal prices increases optimal 
wind deployment by about five percentage points (Figure 17). Lowering gas prices by half (“shale 
gas”) has a similarly expected effect, dramatically lowering optimal wind deployment. Surprisingly 
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Table 3: Price Elasticities at the Benchmark 

w.r.t. w.r.t. 
coal price gas price 

Coal generation –3.9 0.5 

Gas generation 1.5 – 4.9 

Wind generation 1.0 – 0.2 

however, doubling gas prices reduces the optimal wind share. As in the case of CO2 pricing, the 
reason for this seemingly counterintuitive result can be found in the capital stock response to the 
price shock. Higher gas prices induce investments in hard coal, which has lower variable costs, 
reducing the value of wind power and its optimal deployment. 

In economic terms, gas-fired mid- and peak-load plants are complementary technologies 
to VRE, since they efficiently “fill the gap” during times of little renewable generation. Hence, one 
can think of gas and wind generators as a gas/wind “package”. Coal plants are a substitute tech­
nology to the gas/wind package. Increasing coal prices increases both the share of gas and wind. 
Increase gas prices increases the share of coal and reduces the share of gas/wind. Of course, wind 
becomes more competitive versus gas as well, but this effect is too weak to make wind benefit from 
higher gas prices. This can also be expressed in terms of own-price and cross-price elasticities 
(Table 3). The elasticity of wind generation with respect to the coal price is positive, but the elasticity 
with respect to the gas price is negative. 

The cost of large investment projects is subject to high uncertainty, because projects are 
seldom conducted. Small, more industrialized projects can be assessed with more certainty because 
of more experience. Hence, uncertainty of nuclear investment cost is much higher than of wind or 
solar investment cost, where modularity and the high number of units allow reliable cost assessment. 
This is reflected in the broad range of cost estimates reported in the literature (section 4.2) and in 
a higher discount rate for technologies with little investment experience (Oxera 2011). If capital 
costs of thermal plants are 50% higher than assumed in the benchmark, either because of higher 
investment costs or a higher discount rate, the optimal wind share jumps by 13 percentage points 
(Figure 18). 

5.7 Mid-term: Accounting for Today’s Power Plants 

All results of sections 5.1 to 5.6 are long-term optimal wind shares. In this subsection, we 
briefly discuss the optimal wind shares in the medium term, when the existing capital stock (plants, 
storage, interconnectors) is taken into account and modeled as sunk investments. 

Typically, the optimal wind share is much lower in the mid-term than in the long-term. 
The reason is straightforward: in the mid-term, wind only reduces fuel and other variable costs, 
while in the long-term it also reduces capital costs (section 4.4). The benchmark optimal share is 
7% at 30% cost reduction, less than half of the long-term share. The impact of variability and 
integration options is qualitatively similar, but much smaller in size. In contrast to the long term, 
increasing the CO2 price from 20 €/t to 100 €/t increase the optimal share in the medium term, 
because the capacity mix adjusts much less. For the same reason, higher gas prices have virtually 
no impact in the medium term. 

6. DISCUSSION OF NUMERICAL RESULTS 

All numerical findings should be interpreted cautiously, since the applied methodology has 
important shortcomings that potentially bias the results. Being a regional partial equilibrium model, 
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Figure 18: The Impact of Thermal Plants’ Investment Cost is Dramatic 

Notes: This indicates high parameter uncertainty of model results. 

Figure 19: Long-term Optimal Wind Shares in the Benchmark Run and the Range of All 
Sensitivities 

Notes: The range does not include the noNucCC run at 100 €/t, where the optimal wind share is above 40%. 

the power market model EMMA does not account for endogenous learning or wind and solar 
resource supply curves. Moreover, it disregards hydro reservoirs, demand elasticity and internal 
grid bottlenecks. Taken together, these factors might result in a moderate downward bias on the 
estimated optimal share, meaning that our results can be read as conservative estimates. 

This section first summarizes the numerical findings, then discusses the impact of sub­
optimal wind shares on welfare, and finally compares findings to previously published studies. 

6.1 Summarizing Findings 

Figure 19 summarizes the optimal long-term share of wind power in Northwestern Europe 
under all tested parameter assumptions (not including section 5.3). There is large uncertainty about 
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Figure 20: Comparing All Sensitivity Runs for 30% Cost Reductions 

Notes: Sixteen out of twenty runs are in the range of 16%–25% optimal share. 

the optimal wind share driven by parameter uncertainty (1%–45% at low costs). Our benchmark 
assumptions fall in the middle of this range. Additional uncertainty might be introduced by model 
uncertainty, or by parameters that have not been tested here. Moreover, cost reductions play a crucial 
role. At current cost levels, the optimal benchmark market share is 2%, with a range of 0%–13%. 
Reducing wind power’s levelized electricity costs is crucial to introduce significant volumes of 
wind power competitively. If costs can be decreased by 30%, we estimate the competitive share at 
20%, which is roughly three times today’s level. In other words, wind power can be expected to 
keep growing even without subsidies—but only if costs come down. 

Figure 20 displays the optimal wind share at 30% cost reduction for all model runs. In 16 
out of 20 runs, the share is between 16% and 25%, indicating somewhat more robust results than 
Figure 19 might suggest. 

The results for solar are more disappointing: even at 60% cost reduction, the optimal solar 
share is below 4% in all but very few cases. This is consistent with previous findings that the 
marginal value of solar power drops steeply with penetration, because solar radiation is concentrated 
in few hours (Nicolosi 2012, Mills & Wiser 2012, Hirth 2013). In regions that are close to the 
equator, the optimal solar share might be significant higher, both because levelized costs are lower 
and the generation profile is flatter. In 5.3 and 5.4 we presented results for wind power that show 
how dramatic the impact of a flatter profile can be. 

6.2 What is the Cost of Sub-optimal Shares? 

Given the large uncertainty, it is likely that realized wind shares will ex post turn out to 
be sub-optimal, too high or too low. Here we briefly asses the costs of such sub-optimality. With 
perfectly inelastic demand, welfare losses are equivalent to increases in total system costs. Figure 
21 displays the cost increase of sub-optimal wind shares for two cases: current cost levels and 30% 
lower costs. Total system costs increase moderately by 6% if instead of the optimal share of 2% a 
large share of 30% is installed. Similarly, costs increase by 2% if no wind is installed at low cost 
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Figure 21: Cost Increases for Suboptimal Wind Shares 

Notes: Under wind current costs, the optimal wind share is 2%; if instead 30% wind power is installed, total system costs 
increase by 6%. At low wind costs, the optimal share is 20%; if no wind is build, system costs would be 2% higher than 
in the optimum. 

Table 4: Comparing Müsgens (2013), Eurelectric (2013), and the Present Study 

CO2 price Nuclear assumptions Wind share 

Müsgens (2013) 110 €/t restricted to current level in country without phase-out � 40% 

PowerChoices Reloaded 300 €/t restricted to country without phase-out � 30% 

This study 100 €/t no nuclear allowed � 45% 

despite an optimal share of 20%. One percentage point of total costs is about € 1bn in absolute 
terms, or € 0.8 per consumed MWh of electricity. Note that welfare costs would be in general higher 
if demand is modeled price-elastically, because of the resulting quantity reactions. 

As discussed in section 5.5, excluding nuclear and CCS from the set of possible technol­
ogies increases total system costs by 13–25% under strict climate policy. Hence such a ban would 
be more costly than targeting sub-optimal wind shares. 

6.3 Comparing with Other Studies: When do VRE Shares become Very High? 

Some policy makers have formulated very ambitious VRE targets (European Commission 
2011). Only in one model run, this study found such high shares to be optimal: a combination of 
strict climate policy (a CO2 price of 100 €/t) with a restriction of low-carbon base load generators 
(nuclear and CCS). 

We compare this finding to two recent studies that have very high VRE shares to be 
optimal, Müsgens (2013) and PRIMES-based PowerChoices Reloaded (Eurelectric 2013). It turns 
out that these studies also assume these two conditions to be simultaneously fulfilled (Table 4). It 
seems a quite robust finding that very high VRE shares (>50%) are only optimal if those two 
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premises are all satisfied. If they are, the cost level of wind and solar power does not seem to play 
a crucial role. 

7. CONCLUSION 

The theoretical analysis of section 2 showed that electricity is a heterogeneous good along 
three dimensions: time, space, and uncertainty. As a consequence, wind and solar variability affects 
welfare analyses. Ignoring variability leads to biased estimates of the welfare-optimal amount of 
VRE capacity. 

The literature review of section 3 surveyed three classes of models that are in practice 
used to estimate the optimal VRE share: integrated assessment models, energy system models, and 
extended power market models. IAMs are appropriate tools to account for technological learning 
and global commodity markets. Energy system models are strong when it comes to estimating 
electricity demand and wind and solar resource supply curves. However, both model classes have 
a too coarse resolution to explicitly represent variability. Power market models provide sufficient 
details, but are seldom used to optimize VRE capacity endogenously. 

The power market model EMMA was applied in section 5 to estimate the optimal share 
of wind and solar power. Assuming that onshore wind costs can be reduced to 50 €/MWh, we find 
the optimal wind share in Northwestern Europe to be around 20%. In contrast, even under further 
dramatic cost reductions, the optimal solar share would be close to zero. We find that variability 
dramatically impacts the optimal wind share. Specifically, temporal variability has a huge impact 
on these results: if winds were constant, the optimal share would triple. In contrast, forecast errors 
have only a moderate impact: without balancing costs, the optimal share would increase by eight 
percentage points. 

In terms of methodological conclusions, both section 2 and section 5 show that variability 
significantly impacts the optimal share of wind and solar power. Models and analyses that cannot 
represent variability explicitly need to approximate the impact of variability carefully. Furthermore, 
while both a long-term and a mid-term perspective have their merits, the stark differences in results 
indicate how important it is to be explicit about the time scale on which analysis takes place. Finally, 
several findings of section 5 are counter-intuitive at first glance, underlining the necessity for rig­
orous analytical methods that can challenge intuition and conventional wisdom. Specifically, nu­
merical models are needed to capture adjustments of the capital stock and policy interaction. 

In terms of policy conclusions, the numerical results point out the important role of onshore 
wind power as a competitive electricity generation technology. The long-term benchmark estimate 
of a market share of 20% is equivalent to three times as much wind power as today. However, the 
share would be higher if low-carbon mid and peak load technologies were available to supplement 
VRE in the transition to a low-carbon electricity sector. Biomass as well as high-efficient gas-fired 
plants could play a crucial role in this respect. A second conclusion is that different wind turbine 
layouts with larger rotors relative to generator capacity could be quite beneficial, since they provide 
a flatter generation profile. Finally, system flexibility is key to achieve high VRE shares. Must-run 
units that provide heat or ancillary service severely limit the benefits of VRE. Relaxing these 
constraints through technological innovation increases optimal wind deployment, as does increasing 
interconnector capacity. 

Significant methodological gaps have been identified that should be filled by future re­
search. On the one hand, integrated modeling of hydro-thermal systems and a more explicit mod­
eling of transmission grids are promising fields for power market model development. On the other 
hand, developing methods of how to integrate variability into large-scale, coarse models is needed 
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to account for all significant drivers of optimal VRE quantities. These are necessary conditions 
before final conclusions on optimal shares of variable renewables can be drawn. 
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